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Abstract— Typical adaptation and control system design
exploit knowledge of the system to be controlled. Nevertheless,
studies in human movement, language, and other areas suggest
nature develops adaptation mechanisms that do not appear
to have access to such information. This study explores the
possibility of such mechanisms in both natural language and
simple learning environments.

I. MOTIVATION

Typical control theoretic formulations of adaptation tend
to employ knowledge of a particular class of models of the
system, or process to be controlled. This class of models
is usually parameterized in such a way that an estimate of
which model in the class best represents observed behavior
can be systematically updated as new interactions with the
system reveal more observations of its behavior. Adaptation
then occurs as the response to an updated model is likewise
updated to better meet the stated objectives [2].

Criticism of the above approach has included the obser-
vation that many adaptive systems we observe in nature
do not seem to have access to a priori knowledge of a
model class of sufficient complexity to explain the eventual
success of the control system [3]. For example, as an infant
learns to walk, we have not found evidence that the child
retains a model of the at-least six degree of freedom inertial
mechanism each one of her limbs represent (not to mention
torso motion used in the crawling stages of movement
and later assisting balance, etc.), and that the learning
process is one where the child is essentially identifying the
parameters of the compound model of the human motor
system. Instead, we find evidence of a different adaptation
process at work.

For example, experiments with patients recovering from
stroke suggest that healthy human movement is the prod-
uct of smoothly sequenced submovements, and that com-
plexity in movement results from a richer repertoire of
submovements. These observations began when [8] noted
that the earliest movements made by recovering patients
were “fragmented,” where the fragments were each highly
stereotyped. [12] showed that patient recovery appeared to
be a process of blending these submovements more and
more successfully, regardless of age, impairment severity,
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or time since stroke. It would seem that whatever library
of submovement fragments exists after stroke, the recovery
process assimilates them into an expanding library of in-
creasingly complex submovements from which the patient
can maneuver.

The adaptation process observed in stroke patients, how-
ever, is supported by other human-motor studies that iden-
tify the presence of distinct submovements including slow
finger movements [14], eye saccades [4], tracing constant
curvature paths [1], cyclical movements [15], [5], [6],
ballistic movements [11], and movements requiring high
accuracy [10]. Especially noteworthy, however, is the obser-
vation that developing infants may exhibit a similar learning
process of expanding a library of motion primitives through
a relatively simple process of trial-and-error concatenation
of existing submovements [7].

Human language patterns exhibit a similar hierarchical
structure. Natural language not only appears to be composed
of various substructures, such as the obvious decomposition
of paragraphs into sentences, words, and letters, but it would
seem that meaning is achieved through the concatenation
of various language subpatterns such as phrases, idioms,
and analogies that themselves operate as a single language
fragment. A key question is whether human communication
is composed through a process of pattern assimilation, or
whether a more complex model of language is somehow
retained and parametrically identified through experience.

Although both human motion and language acquisition
may be explained through the suggestion that the relevant
model class is “hard-wired” in the structure of our brains,
and subsequent learning is, in fact, a parameter identifi-
cation process, studies suggest pattern-based approaches
may actually be responsible for these phenomenon. Can
pattern-based approaches yield the behavioral complexity,
robustness to environmental changes and uncertainty, or
learning performance observed in nature? This paper takes
a step towards answering that question by hypothesiz-
ing an algorithmically simple memory-driven pattern-based
learning mechanism and reporting its performance, both
in explaining the presence of synonyms as connectors
between distinct sub-patterns in natural language, and in
the adaptation of a simple pointer-robot simulation.



II. PATTERN MANAGEMENT PROCESSES

The definition of a pattern management process begins
with the idea of primitive patterns or fragments. These
initial fragments form the basis from which more complex
maneuvers are composed. To understand the nature of the
assumptions implicit in approaching a control or estimation
problem in this way, we begin by considering vector spaces
of actions, U , states, X , and observations, Y , related by a
nonlinear system of the form

dx

dt
= f(x(t), u(t), t),

y(t) = g(x(t), u(t), t),
(1)

with u(t) ∈ U , x(t) ∈ X , and y(t) ∈ Y . We make the usual
technical assumptions to guarantee the global existence and
uniqueness of solutions, say through the satisfaction of an
appropriate Lipschitz condition, and note that such systems
are extremely general and capable of describing a wide
variety of phenomena.

A pattern-based approach to the control of the system
(1) is a mechanism that can generate a sequence of actions
yielding a desired observation, without knowledge of f or
g. With these restrictions, the only information left to the
mechanism is knowledge of how input patterns seem to
generate output patterns, hence the mechanism must adapt
through experience to develop an increasingly complex
repertoire of action-consequence associations.

As an input stream is parsed, it is broken into smaller sub-
strings of events that are then compared against an existing
library of previously encountered substrings, and added to
the library if no match is found. We start with an empty
library, L = {}, which will contain ordered pairs (Ei, ci)
where ci is the number of times event substring Ei has been
encountered, and an empty buffer set B = {}, which holds
event substrings which have only been encountered once. As
the learner observes a stream of events, [ei, ei+1, . . . , ei+n],
it analyzes them in blocks of m events, beginning again with
each element in turn, where the maximal substring length m

is necessary for computational tractability. By remembering
patterns, the learner remembers each event in the context
in which it occurs. Since longer substrings contain more
context, we first check to see if Em

i
= [ei, ei+1, . . . , ei+m]

has been seen before. If Em
i

is found in B then it has been
encountered before. If Em

i
is found in L, then it’s count

is incremented and analysis continues with the next event,
ei+1, or Em

i+1. If Em
i

is found in B but not L, it is added
to L with a count of two. If Em

i
is not found in B, then it

has never been seen before. It is added to B, and analysis
continues with Em−1

i
, the substring of events beginning

with the same event ei but one event less in length.
When a match is not immediately found, the unmatched

pattern must be remembered so as to allow the possibility
of a future pattern matching against it. This can result,
however, in both the patterns [ei, ei+1, ei+2] and [ei, ei+1]
being generated from the same sequence, giving the false
impression that the combination [ei, ei+1] occurs more
frequently than it actually does. Hence the need for B, to

hold all of the generated one-time patterns, and L, to hold
the confirmed reoccurring patterns. Since pattern generation
for a given Ei halts as soon as a match is found, the
integrity of L is preserved. Using a buffer set has the added
advantage of greatly reducing the cardinality of L, since
many patterns only appear once.

By comparing a substring with similar substrings in the
library, predictions can be made about future events and
similarities between existing events can be discovered. We
will demonstrate this with two examples.

III. IMPLICATIONS FOR NATURAL LANGUAGE

Natural language is an ideal field for testing such a
memory-driven pattern-based application because of the
complexities involved in automatically extracting meaning
from text and the large amount of readily available text,
naturally divided into atomic elements. Analysis of natural
language also affords the opportunity to learn an underlying
structure without the added complexity of control inputs.
We undertake the synonym detection problem, which is to,
given a target word, automatically return other words with
similar meaning. This is relevant to many areas of natural
language processing because the meaning of a sentence or
document can easily be missed if none of the topic words
are repeated, but a variety of synonyms used instead.

We first build a library by reading untagged text, using
words as events. To determine word similarity, the user
first enters a query. The library is then searched for every
pattern containing the query; these patterns are referred
to as query patterns. For each query pattern the word
immediately preceding the query (the pre-word) and the
word immediately following the query (the post-word) are
located. Next, the library is again searched, this time for
every pattern containing the pre-word followed sometime
thereafter by the post-word. These are synonym patterns.
All phrases found occurring between the pre-word and the
post-word in synonym patterns are candidate synonyms.
This poses a minimum requirement of contextual similarity–
the two words closest to the query must also be the closest
to any candidate synonym. Figure 1 shows an example of
how the query “great” can generate the candidate synonym
“very large” through the comparison of two patterns.

matches

very large part of the timeafor

greatduring of the last halfa part

pre−word post−word

candidate synonym

query

matching context

matching context

Fig. 1. The similarity of two phrases can be judged by the amount of
matching context.



The weighting heuristic seeks to give candidate synonyms
found in contexts very similar to that of the query greater
weight; the more similar the contexts, the more similar the
words. The similarity of context is judged by the number of
additional words, or matches, common between the query
pattern and the synonym pattern, beginning with the pre-
word and post-word and counting outward (see figure 1).
Candidate synonyms are sorted by the number of matches;
in the event of a tie, the candidate synonyms are sorted
by the number of different contexts in which they appear.
Two words found in a large number of identical contexts
are usually more similar than two words which appear in
only one common context.

We tested our learner after reading just over 25 million
words from a diverse selection of texts. Table 2 shows
the first ten results returned on some sample queries,
sorted by the above method. The results indicate that the
learner is able to draw conclusions about strongly related
words simply by observing how the language is used. The
learner successfully generates groups of similar words using
no predefined lookup tables, part-of-speech tags, or other
previous knowledge of the language structure. The results
are returned in an order intuitive to humans and suggest
an accurate relative degree of similarity between words.
Antonyms, while clearly not synonyms, are strongly related
word pairs, and appear in similar contexts. Note that “small”
ranks highly as similar to “large.” By allowing candidate
synonyms to be of any length, we are also able to capture
synonyms requiring more than one word to express.

These results support the idea that similar words appear in
similar contexts [9]. Consistently, the greater the contextual
match up between the query phrase and the synonym phrase,
the greater the similarity of the phrases. As more text is
read the accuracy of the results is expected to improve even
further.

Once the library has been constructed, it can also be
used for a number of other natural language analysis tasks.
Phrase completion is easily performed by checking a seed
phrase against the library, and determining what words or
phrases usually follow. This process can be iterated upon,
resulting in novel text generation. Checking a user’s text
against the library provides a useful spellchecking tool,
which, since it is entirely context based, has no difficulty
detecting real-word spelling and other grammatical errors.

IV. ADAPTATION FOR CONTROL

This same learner can easily be applied to robotic move-
ment control with only minor modifications. One difference
is the addition of control inputs, which allows the learner to
interact with its environment. We created a virtual pointer
robot with one degree of freedom [13]. It has two possible
actions, turn 10o clockwise (R) and 10o counterclockwise
(L), and its world state corresponds to an angle degree mea-
sured in 10o bins (1−36). The robot is entirely independent
of the world, capable only of executing a turning action
and observing the world state, and begins its existence with

SEVEN LARGE SUGAR

seven large sugar
five great flour
two small fruit
four considerable butter
three certain salt
ten very large water

twelve good mace
fifteen very small meat
twenty vast cream

fifty larger brandy

FEET FATHER ROAD

feet father road
face mother river
heart wife street
head son table
side head fire

house life hill
lips voice head

work face house
hands heart room
back name lake

Fig. 2. Returned synonyms on sample queries. Only the first 10 results
are shown.

no previous knowledge of how its environment functions.
Event sequences now take the form of alternating actions
and observations. We allowed the robot to interact with six
different environments:

• Simple system: Measurement states 136 and command
events R and L as described previously.

• Hard stop: Same as the simple system, but with
a “hard stop” inserted at 0o, prohibiting continuous
rotational movement.

• Sensory state scramble: Same as the simple system,
but after 5000 trials, the numerical labels for sensory
states are renamed 136 in random order, making all
prior learning inapplicable and misleading.

• Random error: Same as the simple system, but with
up to 5o of random error added to each command
event, resulting in movements of between 5o and 15o.
With measurement resolution limited to 10o, the error
will express itself as measurement states being either
skipped or unchanged when a command is issued.

• Random delays: Same as the simple system, but each
command event has a 50% chance of being delayed
and executed at the instant the next command is issued.
As a result, when a command is issued, zero, one, or
two command events may actually take place.

In each case, the learning agent generated random com-
mand events and attempted to predict the results before
executing the command. Predictions were generated by
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Fig. 3. Simulation performance for the pointer robot in six environments.

searching through previously observed patterns for instances
containing a portion of the most recent event history.
Patterns that matched a longer portion of the event history
were favored heavily. Patterns that were observed recently
or that had been observed many times were also favored.
Once a pattern was selected a prediction was obtained
by reading what happened next when the situation had
been encountered previously. In each condition, the learning
agent began with a clean slate; that is, there were no
previously observed experiences upon which to build. As
a result, lack of prior experience made it impossible for
the agent to offer a prediction in some cases. These were
counted as unsuccessful predictions.

The results of the simulations are shown in figure 3.
As shown in the plot, the learning agent achieved 100%
accuracy in the simple system after 2000 trials. The learning
agent showed similar performance in the presence of a
hard stop. In both these conditions, the performance of the
system is deterministic, allowing correct predictions at every
time step.

Scrambling the sensory state labels changed the system
fundamentally, making the probability of encountering a
previously observed pattern small. Learning essentially be-
gan from scratch, and the initial learning transient was re-
peated after scrambling. This resulted in a marked decrease
in performance initially, but the agent quickly recovered and
predicted the last 1000 trials perfectly.

The introduction of random noise into the movement
amplitude made perfect prediction impossible. The noise
amplitude exactly corresponded to the resolution of the
position measurement, 10o. As a result, knowledge of the
current position allowed prediction the subsequent position
with an accuracy of only 50%. With a longer event history,
it was possible to increase the accuracy, but only to a certain
extent. The learning agent began with a prediction accuracy
slightly higher than 50%, and gradually it increased to near
70%.

Random time delays introduced the possibility that zero,
one, or two command events might be executed at once.

With a 50% probability of delay, at any given time step there
was a 25% chance that no command would be executed,
a 25% chance that two commands would be executed
simultaneously, a 25% chance that the previous command
alone would be executed, and only a 25% chance that the
current command alone would be executed. As a result, even
once the behavior of this simple system is learned, only a
25% success rate can be expected with no knowledge of
prior events. However, with a complete knowledge of prior
events, it was possible to infer whether the prior command
event had been executed, allowing a prediction accuracy of
50%. The learning agent began with prediction accuracy
slightly higher than 25%, and that accuracy climbed to just
over 45% after 10,000 trials.

V. CONCLUSION

A simple pattern-based adaptation mechanism was used
for both synonymity detection in natural language and
basic control tasks in a virtual pointer-robot simulation.
Results suggest that under certain conditions, memory-
based methods may perform well without prior knowledge
of their environment.
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